Metamath Proof Explorer


Theorem bj-nnfim

Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
2 bj-nnfim2
 |-  ( ( F// x ph /\ F// x ps ) -> ( ( A. x ph -> E. x ps ) -> ( ph -> ps ) ) )
3 1 2 syl5bi
 |-  ( ( F// x ph /\ F// x ps ) -> ( E. x ( ph -> ps ) -> ( ph -> ps ) ) )
4 bj-nnfim1
 |-  ( ( F// x ph /\ F// x ps ) -> ( ( ph -> ps ) -> ( E. x ph -> A. x ps ) ) )
5 19.38
 |-  ( ( E. x ph -> A. x ps ) -> A. x ( ph -> ps ) )
6 4 5 syl6
 |-  ( ( F// x ph /\ F// x ps ) -> ( ( ph -> ps ) -> A. x ( ph -> ps ) ) )
7 df-bj-nnf
 |-  ( F// x ( ph -> ps ) <-> ( ( E. x ( ph -> ps ) -> ( ph -> ps ) ) /\ ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ) )
8 3 6 7 sylanbrc
 |-  ( ( F// x ph /\ F// x ps ) -> F// x ( ph -> ps ) )