Metamath Proof Explorer


Theorem bj-nnfimd

Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023)

Ref Expression
Hypotheses bj-nnfimd.1
|- ( ph -> F// x ps )
bj-nnfimd.2
|- ( ph -> F// x ch )
Assertion bj-nnfimd
|- ( ph -> F// x ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 bj-nnfimd.1
 |-  ( ph -> F// x ps )
2 bj-nnfimd.2
 |-  ( ph -> F// x ch )
3 bj-nnfim
 |-  ( ( F// x ps /\ F// x ch ) -> F// x ( ps -> ch ) )
4 1 2 3 syl2anc
 |-  ( ph -> F// x ( ps -> ch ) )