Metamath Proof Explorer


Theorem bj-nnfimd

Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023)

Ref Expression
Hypotheses bj-nnfimd.1 φ Ⅎ' x ψ
bj-nnfimd.2 φ Ⅎ' x χ
Assertion bj-nnfimd φ Ⅎ' x ψ χ

Proof

Step Hyp Ref Expression
1 bj-nnfimd.1 φ Ⅎ' x ψ
2 bj-nnfimd.2 φ Ⅎ' x χ
3 bj-nnfim Ⅎ' x ψ Ⅎ' x χ Ⅎ' x ψ χ
4 1 2 3 syl2anc φ Ⅎ' x ψ χ