Metamath Proof Explorer


Theorem bj-nnfan

Description: Nonfreeness in both conjuncts implies nonfreeness in the conjunction. (Contributed by BJ, 19-Nov-2023) In classical logic, there is a proof using the definition of conjunction in terms of implication and negation, so using bj-nnfim , bj-nnfnt and bj-nnfbi , but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfan Ⅎ'xφℲ'xψℲ'xφψ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ'xφxφφφxφ
2 df-bj-nnf Ⅎ'xψxψψψxψ
3 19.40 xφψxφxψ
4 anim12 xφφxψψxφxψφψ
5 3 4 syl5 xφφxψψxφψφψ
6 anim12 φxφψxψφψxφxψ
7 id φψφψ
8 7 alanimi xφxψxφψ
9 6 8 syl6 φxφψxψφψxφψ
10 5 9 anim12i xφφxψψφxφψxψxφψφψφψxφψ
11 10 an4s xφφφxφxψψψxψxφψφψφψxφψ
12 1 2 11 syl2anb Ⅎ'xφℲ'xψxφψφψφψxφψ
13 df-bj-nnf Ⅎ'xφψxφψφψφψxφψ
14 12 13 sylibr Ⅎ'xφℲ'xψℲ'xφψ