| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-nnfim |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ph -> ps ) ) |
| 2 |
|
bj-nnfim |
|- ( ( F// x ps /\ F// x ph ) -> F// x ( ps -> ph ) ) |
| 3 |
2
|
ancoms |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ps -> ph ) ) |
| 4 |
|
bj-nnfan |
|- ( ( F// x ( ph -> ps ) /\ F// x ( ps -> ph ) ) -> F// x ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 6 |
|
dfbi2 |
|- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 7 |
6
|
bicomi |
|- ( ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( ph <-> ps ) ) |
| 8 |
7
|
bj-nnfbii |
|- ( F// x ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> F// x ( ph <-> ps ) ) |
| 9 |
5 8
|
sylib |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ph <-> ps ) ) |