Metamath Proof Explorer


Theorem bj-ntrufal

Description: The negation of a theorem is equivalent to false. This can shorten dfnul2 . (Contributed by BJ, 5-Oct-2024)

Ref Expression
Hypothesis bj-ntrufal.1 𝜑
Assertion bj-ntrufal ( ¬ 𝜑 ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 bj-ntrufal.1 𝜑
2 1 notnoti ¬ ¬ 𝜑
3 2 bifal ( ¬ 𝜑 ↔ ⊥ )