| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-nnclav |
⊢ ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → 𝜒 ) ) |
| 2 |
|
ax-1 |
⊢ ( 𝜒 → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) |
| 3 |
2
|
imim2i |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) ) |
| 4 |
|
peirce |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) |
| 5 |
3 4
|
syl |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → ( ( 𝜑 → 𝜓 ) → 𝜒 ) ) |
| 6 |
|
imim2 |
⊢ ( ( 𝜒 → 𝜑 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ( 𝜑 → 𝜓 ) → 𝜑 ) ) ) |
| 7 |
|
peirce |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → 𝜑 ) |
| 8 |
5 6 7
|
syl56 |
⊢ ( ( 𝜒 → 𝜑 ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → 𝜑 ) ) |
| 9 |
8
|
a1dd |
⊢ ( ( 𝜒 → 𝜑 ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) ) ) |
| 10 |
1 9
|
syl11 |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → ( ( 𝜒 → 𝜑 ) → 𝜒 ) ) |
| 11 |
|
peirce |
⊢ ( ( ( 𝜒 → 𝜑 ) → 𝜒 ) → 𝜒 ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → 𝜑 ) → 𝜒 ) → 𝜒 ) |