Metamath Proof Explorer


Theorem bj-rvecabl

Description: (The additive groups of) real vector spaces are commutative groups (elemental version). (Contributed by BJ, 9-Jun-2019)

Ref Expression
Assertion bj-rvecabl ( 𝐴 ∈ ℝ-Vec → 𝐴 ∈ Abel )

Proof

Step Hyp Ref Expression
1 bj-rvecssabl ℝ-Vec ⊆ Abel
2 1 sseli ( 𝐴 ∈ ℝ-Vec → 𝐴 ∈ Abel )