Metamath Proof Explorer


Theorem bj-rvecabl

Description: (The additive groups of) real vector spaces are commutative groups (elemental version). (Contributed by BJ, 9-Jun-2019)

Ref Expression
Assertion bj-rvecabl
|- ( A e. RRVec -> A e. Abel )

Proof

Step Hyp Ref Expression
1 bj-rvecssabl
 |-  RRVec C_ Abel
2 1 sseli
 |-  ( A e. RRVec -> A e. Abel )