Metamath Proof Explorer


Theorem bj-rveccvec

Description: Real vector spaces are subcomplex vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rveccvec ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂVec )

Proof

Step Hyp Ref Expression
1 bj-rvecsscvec ℝ-Vec ⊆ ℂVec
2 1 sseli ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂVec )