Metamath Proof Explorer


Theorem bj-rvecsscvec

Description: Real vector spaces are subcomplex vector spaces. (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecsscvec ℝ-Vec ⊆ ℂVec

Proof

Step Hyp Ref Expression
1 bj-rvecsscmod ℝ-Vec ⊆ ℂMod
2 bj-rvecssvec ℝ-Vec ⊆ LVec
3 1 2 ssini ℝ-Vec ⊆ ( ℂMod ∩ LVec )
4 df-cvs ℂVec = ( ℂMod ∩ LVec )
5 3 4 sseqtrri ℝ-Vec ⊆ ℂVec