Metamath Proof Explorer


Theorem bj-rvecsscvec

Description: Real vector spaces are subcomplex vector spaces. (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecsscvec ℝVec ℂVec

Proof

Step Hyp Ref Expression
1 bj-rvecsscmod ℝVec CMod
2 bj-rvecssvec ℝVec LVec
3 1 2 ssini ℝVec CMod LVec
4 df-cvs ℂVec = CMod LVec
5 3 4 sseqtrri ℝVec ℂVec