Metamath Proof Explorer


Theorem bj-rvecsscvec

Description: Real vector spaces are subcomplex vector spaces. (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecsscvec
|- RRVec C_ CVec

Proof

Step Hyp Ref Expression
1 bj-rvecsscmod
 |-  RRVec C_ CMod
2 bj-rvecssvec
 |-  RRVec C_ LVec
3 1 2 ssini
 |-  RRVec C_ ( CMod i^i LVec )
4 df-cvs
 |-  CVec = ( CMod i^i LVec )
5 3 4 sseqtrri
 |-  RRVec C_ CVec