Metamath Proof Explorer


Theorem bj-rvecssvec

Description: Real vector spaces are vector spaces. (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecssvec
|- RRVec C_ LVec

Proof

Step Hyp Ref Expression
1 bj-rvecvec
 |-  ( x e. RRVec -> x e. LVec )
2 1 ssriv
 |-  RRVec C_ LVec