| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-rvecmod |  |-  ( V e. RRVec -> V e. LMod ) | 
						
							| 2 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 3 | 2 | a1i |  |-  ( V e. RRVec -> RRfld = ( CCfld |`s RR ) ) | 
						
							| 4 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 5 | 4 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 6 | 5 | a1i |  |-  ( V e. RRVec -> RR e. ( SubRing ` CCfld ) ) | 
						
							| 7 |  | bj-rvecrr |  |-  ( V e. RRVec -> ( Scalar ` V ) = RRfld ) | 
						
							| 8 | 7 | eqcomd |  |-  ( V e. RRVec -> RRfld = ( Scalar ` V ) ) | 
						
							| 9 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 10 | 9 | a1i |  |-  ( V e. RRVec -> RR = ( Base ` RRfld ) ) | 
						
							| 11 | 8 10 | bj-isclm |  |-  ( V e. RRVec -> ( V e. CMod <-> ( V e. LMod /\ RRfld = ( CCfld |`s RR ) /\ RR e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 12 | 1 3 6 11 | mpbir3and |  |-  ( V e. RRVec -> V e. CMod ) |