Step |
Hyp |
Ref |
Expression |
1 |
|
bj-rvecmod |
|- ( V e. RRVec -> V e. LMod ) |
2 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
3 |
2
|
a1i |
|- ( V e. RRVec -> RRfld = ( CCfld |`s RR ) ) |
4 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
5 |
4
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
6 |
5
|
a1i |
|- ( V e. RRVec -> RR e. ( SubRing ` CCfld ) ) |
7 |
|
bj-rvecrr |
|- ( V e. RRVec -> ( Scalar ` V ) = RRfld ) |
8 |
7
|
eqcomd |
|- ( V e. RRVec -> RRfld = ( Scalar ` V ) ) |
9 |
|
rebase |
|- RR = ( Base ` RRfld ) |
10 |
9
|
a1i |
|- ( V e. RRVec -> RR = ( Base ` RRfld ) ) |
11 |
8 10
|
bj-isclm |
|- ( V e. RRVec -> ( V e. CMod <-> ( V e. LMod /\ RRfld = ( CCfld |`s RR ) /\ RR e. ( SubRing ` CCfld ) ) ) ) |
12 |
1 3 6 11
|
mpbir3and |
|- ( V e. RRVec -> V e. CMod ) |