Metamath Proof Explorer


Theorem bj-isclm

Description: The predicate "is a subcomplex module". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypotheses bj-isclm.scal
|- ( ph -> F = ( Scalar ` W ) )
bj-isclm.base
|- ( ph -> K = ( Base ` F ) )
Assertion bj-isclm
|- ( ph -> ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) )

Proof

Step Hyp Ref Expression
1 bj-isclm.scal
 |-  ( ph -> F = ( Scalar ` W ) )
2 bj-isclm.base
 |-  ( ph -> K = ( Base ` F ) )
3 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
4 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
5 3 4 isclm
 |-  ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) )
6 1 eqcomd
 |-  ( ph -> ( Scalar ` W ) = F )
7 fveq2
 |-  ( F = ( Scalar ` W ) -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) )
8 eqtr
 |-  ( ( K = ( Base ` F ) /\ ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) -> K = ( Base ` ( Scalar ` W ) ) )
9 8 eqcomd
 |-  ( ( K = ( Base ` F ) /\ ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) -> ( Base ` ( Scalar ` W ) ) = K )
10 9 ex
 |-  ( K = ( Base ` F ) -> ( ( Base ` F ) = ( Base ` ( Scalar ` W ) ) -> ( Base ` ( Scalar ` W ) ) = K ) )
11 2 7 10 syl2im
 |-  ( ph -> ( F = ( Scalar ` W ) -> ( Base ` ( Scalar ` W ) ) = K ) )
12 1 11 mpd
 |-  ( ph -> ( Base ` ( Scalar ` W ) ) = K )
13 12 oveq2d
 |-  ( ph -> ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) = ( CCfld |`s K ) )
14 6 13 eqeq12d
 |-  ( ph -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> F = ( CCfld |`s K ) ) )
15 12 eleq1d
 |-  ( ph -> ( ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) <-> K e. ( SubRing ` CCfld ) ) )
16 14 15 3anbi23d
 |-  ( ph -> ( ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) )
17 5 16 syl5bb
 |-  ( ph -> ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) )