| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-isclm.scal |  |-  ( ph -> F = ( Scalar ` W ) ) | 
						
							| 2 |  | bj-isclm.base |  |-  ( ph -> K = ( Base ` F ) ) | 
						
							| 3 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 5 | 3 4 | isclm |  |-  ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 6 | 1 | eqcomd |  |-  ( ph -> ( Scalar ` W ) = F ) | 
						
							| 7 |  | fveq2 |  |-  ( F = ( Scalar ` W ) -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 8 |  | eqtr |  |-  ( ( K = ( Base ` F ) /\ ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) -> K = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( K = ( Base ` F ) /\ ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) -> ( Base ` ( Scalar ` W ) ) = K ) | 
						
							| 10 | 9 | ex |  |-  ( K = ( Base ` F ) -> ( ( Base ` F ) = ( Base ` ( Scalar ` W ) ) -> ( Base ` ( Scalar ` W ) ) = K ) ) | 
						
							| 11 | 2 7 10 | syl2im |  |-  ( ph -> ( F = ( Scalar ` W ) -> ( Base ` ( Scalar ` W ) ) = K ) ) | 
						
							| 12 | 1 11 | mpd |  |-  ( ph -> ( Base ` ( Scalar ` W ) ) = K ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ph -> ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) = ( CCfld |`s K ) ) | 
						
							| 14 | 6 13 | eqeq12d |  |-  ( ph -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> F = ( CCfld |`s K ) ) ) | 
						
							| 15 | 12 | eleq1d |  |-  ( ph -> ( ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) <-> K e. ( SubRing ` CCfld ) ) ) | 
						
							| 16 | 14 15 | 3anbi23d |  |-  ( ph -> ( ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 17 | 5 16 | bitrid |  |-  ( ph -> ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |