Step |
Hyp |
Ref |
Expression |
1 |
|
bj-isclm.scal |
|- ( ph -> F = ( Scalar ` W ) ) |
2 |
|
bj-isclm.base |
|- ( ph -> K = ( Base ` F ) ) |
3 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
4 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
5 |
3 4
|
isclm |
|- ( W e. CMod <-> ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) ) |
6 |
1
|
eqcomd |
|- ( ph -> ( Scalar ` W ) = F ) |
7 |
|
fveq2 |
|- ( F = ( Scalar ` W ) -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
8 |
|
eqtr |
|- ( ( K = ( Base ` F ) /\ ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) -> K = ( Base ` ( Scalar ` W ) ) ) |
9 |
8
|
eqcomd |
|- ( ( K = ( Base ` F ) /\ ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) -> ( Base ` ( Scalar ` W ) ) = K ) |
10 |
9
|
ex |
|- ( K = ( Base ` F ) -> ( ( Base ` F ) = ( Base ` ( Scalar ` W ) ) -> ( Base ` ( Scalar ` W ) ) = K ) ) |
11 |
2 7 10
|
syl2im |
|- ( ph -> ( F = ( Scalar ` W ) -> ( Base ` ( Scalar ` W ) ) = K ) ) |
12 |
1 11
|
mpd |
|- ( ph -> ( Base ` ( Scalar ` W ) ) = K ) |
13 |
12
|
oveq2d |
|- ( ph -> ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) = ( CCfld |`s K ) ) |
14 |
6 13
|
eqeq12d |
|- ( ph -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> F = ( CCfld |`s K ) ) ) |
15 |
12
|
eleq1d |
|- ( ph -> ( ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) <-> K e. ( SubRing ` CCfld ) ) ) |
16 |
14 15
|
3anbi23d |
|- ( ph -> ( ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) /\ ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |
17 |
5 16
|
syl5bb |
|- ( ph -> ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) |