| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclm.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | isclm.k |  |-  K = ( Base ` F ) | 
						
							| 3 |  | fvexd |  |-  ( w = W -> ( Scalar ` w ) e. _V ) | 
						
							| 4 |  | fvexd |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) e. _V ) | 
						
							| 5 |  | id |  |-  ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) ) | 
						
							| 6 |  | fveq2 |  |-  ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( w = W -> ( Scalar ` w ) = F ) | 
						
							| 8 | 5 7 | sylan9eqr |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> f = F ) | 
						
							| 10 |  | id |  |-  ( k = ( Base ` f ) -> k = ( Base ` f ) ) | 
						
							| 11 | 8 | fveq2d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K ) | 
						
							| 13 | 10 12 | sylan9eqr |  |-  ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> k = K ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( CCfld |`s k ) = ( CCfld |`s K ) ) | 
						
							| 15 | 9 14 | eqeq12d |  |-  ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( f = ( CCfld |`s k ) <-> F = ( CCfld |`s K ) ) ) | 
						
							| 16 | 13 | eleq1d |  |-  ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( k e. ( SubRing ` CCfld ) <-> K e. ( SubRing ` CCfld ) ) ) | 
						
							| 17 | 15 16 | anbi12d |  |-  ( ( ( w = W /\ f = ( Scalar ` w ) ) /\ k = ( Base ` f ) ) -> ( ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 18 | 4 17 | sbcied |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 19 | 3 18 | sbcied |  |-  ( w = W -> ( [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) <-> ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 20 |  | df-clm |  |-  CMod = { w e. LMod | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ k e. ( SubRing ` CCfld ) ) } | 
						
							| 21 | 19 20 | elrab2 |  |-  ( W e. CMod <-> ( W e. LMod /\ ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 22 |  | 3anass |  |-  ( ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) <-> ( W e. LMod /\ ( F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 23 | 21 22 | bitr4i |  |-  ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) |