Step |
Hyp |
Ref |
Expression |
1 |
|
bj-isclm.scal |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
2 |
|
bj-isclm.base |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝐹 ) ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
5 |
3 4
|
isclm |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
6 |
1
|
eqcomd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = 𝐹 ) |
7 |
|
fveq2 |
⊢ ( 𝐹 = ( Scalar ‘ 𝑊 ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
8 |
|
eqtr |
⊢ ( ( 𝐾 = ( Base ‘ 𝐹 ) ∧ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝐾 = ( Base ‘ 𝐹 ) ∧ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = 𝐾 ) |
10 |
9
|
ex |
⊢ ( 𝐾 = ( Base ‘ 𝐹 ) → ( ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = 𝐾 ) ) |
11 |
2 7 10
|
syl2im |
⊢ ( 𝜑 → ( 𝐹 = ( Scalar ‘ 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = 𝐾 ) ) |
12 |
1 11
|
mpd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = 𝐾 ) |
13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) = ( ℂfld ↾s 𝐾 ) ) |
14 |
6 13
|
eqeq12d |
⊢ ( 𝜑 → ( ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
15 |
12
|
eleq1d |
⊢ ( 𝜑 → ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ↔ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
16 |
14 15
|
3anbi23d |
⊢ ( 𝜑 → ( ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
17 |
5 16
|
syl5bb |
⊢ ( 𝜑 → ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |