| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-isclm.scal | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 2 |  | bj-isclm.base | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ 𝐹 ) ) | 
						
							| 3 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 5 | 3 4 | isclm | ⊢ ( 𝑊  ∈  ℂMod  ↔  ( 𝑊  ∈  LMod  ∧  ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 6 | 1 | eqcomd | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑊 )  =  𝐹 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝐹  =  ( Scalar ‘ 𝑊 )  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 8 |  | eqtr | ⊢ ( ( 𝐾  =  ( Base ‘ 𝐹 )  ∧  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 𝐾  =  ( Base ‘ 𝐹 )  ∧  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  𝐾 ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝐾  =  ( Base ‘ 𝐹 )  →  ( ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) )  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  𝐾 ) ) | 
						
							| 11 | 2 7 10 | syl2im | ⊢ ( 𝜑  →  ( 𝐹  =  ( Scalar ‘ 𝑊 )  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  𝐾 ) ) | 
						
							| 12 | 1 11 | mpd | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  𝐾 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝜑  →  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 14 | 6 13 | eqeq12d | ⊢ ( 𝜑  →  ( ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) ) | 
						
							| 15 | 12 | eleq1d | ⊢ ( 𝜑  →  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( SubRing ‘ ℂfld )  ↔  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 16 | 14 15 | 3anbi23d | ⊢ ( 𝜑  →  ( ( 𝑊  ∈  LMod  ∧  ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( SubRing ‘ ℂfld ) )  ↔  ( 𝑊  ∈  LMod  ∧  𝐹  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 17 | 5 16 | bitrid | ⊢ ( 𝜑  →  ( 𝑊  ∈  ℂMod  ↔  ( 𝑊  ∈  LMod  ∧  𝐹  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) |