Metamath Proof Explorer


Theorem bj-rveccmod

Description: Real vector spaces are subcomplex modules (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rveccmod VℝVecVCMod

Proof

Step Hyp Ref Expression
1 bj-rvecmod VℝVecVLMod
2 df-refld fld=fld𝑠
3 2 a1i VℝVecfld=fld𝑠
4 resubdrg SubRingfldfldDivRing
5 4 simpli SubRingfld
6 5 a1i VℝVecSubRingfld
7 bj-rvecrr VℝVecScalarV=fld
8 7 eqcomd VℝVecfld=ScalarV
9 rebase =Basefld
10 9 a1i VℝVec=Basefld
11 8 10 bj-isclm VℝVecVCModVLModfld=fld𝑠SubRingfld
12 1 3 6 11 mpbir3and VℝVecVCMod