Metamath Proof Explorer


Theorem bj-rveccmod

Description: Real vector spaces are subcomplex modules (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rveccmod V ℝVec V CMod

Proof

Step Hyp Ref Expression
1 bj-rvecmod V ℝVec V LMod
2 df-refld fld = fld 𝑠
3 2 a1i V ℝVec fld = fld 𝑠
4 resubdrg SubRing fld fld DivRing
5 4 simpli SubRing fld
6 5 a1i V ℝVec SubRing fld
7 bj-rvecrr V ℝVec Scalar V = fld
8 7 eqcomd V ℝVec fld = Scalar V
9 rebase = Base fld
10 9 a1i V ℝVec = Base fld
11 8 10 bj-isclm V ℝVec V CMod V LMod fld = fld 𝑠 SubRing fld
12 1 3 6 11 mpbir3and V ℝVec V CMod