Step |
Hyp |
Ref |
Expression |
1 |
|
bj-rvecmod |
⊢ ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod ) |
2 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
3 |
2
|
a1i |
⊢ ( 𝑉 ∈ ℝ-Vec → ℝfld = ( ℂfld ↾s ℝ ) ) |
4 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
5 |
4
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
6 |
5
|
a1i |
⊢ ( 𝑉 ∈ ℝ-Vec → ℝ ∈ ( SubRing ‘ ℂfld ) ) |
7 |
|
bj-rvecrr |
⊢ ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld ) |
8 |
7
|
eqcomd |
⊢ ( 𝑉 ∈ ℝ-Vec → ℝfld = ( Scalar ‘ 𝑉 ) ) |
9 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
10 |
9
|
a1i |
⊢ ( 𝑉 ∈ ℝ-Vec → ℝ = ( Base ‘ ℝfld ) ) |
11 |
8 10
|
bj-isclm |
⊢ ( 𝑉 ∈ ℝ-Vec → ( 𝑉 ∈ ℂMod ↔ ( 𝑉 ∈ LMod ∧ ℝfld = ( ℂfld ↾s ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) ) ) |
12 |
1 3 6 11
|
mpbir3and |
⊢ ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂMod ) |