Metamath Proof Explorer


Theorem bj-rveccmod

Description: Real vector spaces are subcomplex modules (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rveccmod ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂMod )

Proof

Step Hyp Ref Expression
1 bj-rvecmod ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod )
2 df-refld fld = ( ℂflds ℝ )
3 2 a1i ( 𝑉 ∈ ℝ-Vec → ℝfld = ( ℂflds ℝ ) )
4 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
5 4 simpli ℝ ∈ ( SubRing ‘ ℂfld )
6 5 a1i ( 𝑉 ∈ ℝ-Vec → ℝ ∈ ( SubRing ‘ ℂfld ) )
7 bj-rvecrr ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld )
8 7 eqcomd ( 𝑉 ∈ ℝ-Vec → ℝfld = ( Scalar ‘ 𝑉 ) )
9 rebase ℝ = ( Base ‘ ℝfld )
10 9 a1i ( 𝑉 ∈ ℝ-Vec → ℝ = ( Base ‘ ℝfld ) )
11 8 10 bj-isclm ( 𝑉 ∈ ℝ-Vec → ( 𝑉 ∈ ℂMod ↔ ( 𝑉 ∈ LMod ∧ ℝfld = ( ℂflds ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) ) )
12 1 3 6 11 mpbir3and ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂMod )