| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-rvecmod | ⊢ ( 𝑉  ∈  ℝ-Vec  →  𝑉  ∈  LMod ) | 
						
							| 2 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ℝfld  =  ( ℂfld  ↾s  ℝ ) ) | 
						
							| 4 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 5 | 4 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ℝ  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 7 |  | bj-rvecrr | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ( Scalar ‘ 𝑉 )  =  ℝfld ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ℝfld  =  ( Scalar ‘ 𝑉 ) ) | 
						
							| 9 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ℝ  =  ( Base ‘ ℝfld ) ) | 
						
							| 11 | 8 10 | bj-isclm | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ( 𝑉  ∈  ℂMod  ↔  ( 𝑉  ∈  LMod  ∧  ℝfld  =  ( ℂfld  ↾s  ℝ )  ∧  ℝ  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 12 | 1 3 6 11 | mpbir3and | ⊢ ( 𝑉  ∈  ℝ-Vec  →  𝑉  ∈  ℂMod ) |