Metamath Proof Explorer


Theorem bj-rvecrr

Description: The field of scalars of a real vector space is the field of real numbers. (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecrr ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld )

Proof

Step Hyp Ref Expression
1 bj-isrvec ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) )
2 1 simprbi ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld )