Metamath Proof Explorer
Description: The field of scalars of a real vector space is the field of real numbers.
(Contributed by BJ, 6-Jan-2024)
|
|
Ref |
Expression |
|
Assertion |
bj-rvecrr |
⊢ ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-isrvec |
⊢ ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) ) |
2 |
1
|
simprbi |
⊢ ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld ) |