Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-rvec |
⊢ ℝ-Vec = ( LMod ∩ ( ◡ Scalar “ { ℝfld } ) ) |
2 |
1
|
elin2 |
⊢ ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ 𝑉 ∈ ( ◡ Scalar “ { ℝfld } ) ) ) |
3 |
|
bj-evalfun |
⊢ Fun Slot 5 |
4 |
|
df-sca |
⊢ Scalar = Slot 5 |
5 |
4
|
funeqi |
⊢ ( Fun Scalar ↔ Fun Slot 5 ) |
6 |
3 5
|
mpbir |
⊢ Fun Scalar |
7 |
|
0re |
⊢ 0 ∈ ℝ |
8 |
7
|
n0ii |
⊢ ¬ ℝ = ∅ |
9 |
|
eqcom |
⊢ ( ∅ = ℝ ↔ ℝ = ∅ ) |
10 |
8 9
|
mtbir |
⊢ ¬ ∅ = ℝ |
11 |
|
fveq2 |
⊢ ( ∅ = ℝfld → ( Base ‘ ∅ ) = ( Base ‘ ℝfld ) ) |
12 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
13 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
14 |
11 12 13
|
3eqtr4g |
⊢ ( ∅ = ℝfld → ∅ = ℝ ) |
15 |
10 14
|
mto |
⊢ ¬ ∅ = ℝfld |
16 |
|
elsni |
⊢ ( ∅ ∈ { ℝfld } → ∅ = ℝfld ) |
17 |
15 16
|
mto |
⊢ ¬ ∅ ∈ { ℝfld } |
18 |
|
bj-fvimacnv0 |
⊢ ( ( Fun Scalar ∧ ¬ ∅ ∈ { ℝfld } ) → ( ( Scalar ‘ 𝑉 ) ∈ { ℝfld } ↔ 𝑉 ∈ ( ◡ Scalar “ { ℝfld } ) ) ) |
19 |
6 17 18
|
mp2an |
⊢ ( ( Scalar ‘ 𝑉 ) ∈ { ℝfld } ↔ 𝑉 ∈ ( ◡ Scalar “ { ℝfld } ) ) |
20 |
|
fvex |
⊢ ( Scalar ‘ 𝑉 ) ∈ V |
21 |
20
|
elsn |
⊢ ( ( Scalar ‘ 𝑉 ) ∈ { ℝfld } ↔ ( Scalar ‘ 𝑉 ) = ℝfld ) |
22 |
19 21
|
bitr3i |
⊢ ( 𝑉 ∈ ( ◡ Scalar “ { ℝfld } ) ↔ ( Scalar ‘ 𝑉 ) = ℝfld ) |
23 |
22
|
anbi2i |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑉 ∈ ( ◡ Scalar “ { ℝfld } ) ) ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) ) |
24 |
2 23
|
bitri |
⊢ ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) ) |