Metamath Proof Explorer


Theorem bj-isrvec

Description: The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-isrvec ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) )

Proof

Step Hyp Ref Expression
1 df-bj-rvec ℝ-Vec = ( LMod ∩ ( Scalar “ { ℝfld } ) )
2 1 elin2 ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ 𝑉 ∈ ( Scalar “ { ℝfld } ) ) )
3 bj-evalfun Fun Slot 5
4 df-sca Scalar = Slot 5
5 4 funeqi ( Fun Scalar ↔ Fun Slot 5 )
6 3 5 mpbir Fun Scalar
7 0re 0 ∈ ℝ
8 7 n0ii ¬ ℝ = ∅
9 eqcom ( ∅ = ℝ ↔ ℝ = ∅ )
10 8 9 mtbir ¬ ∅ = ℝ
11 fveq2 ( ∅ = ℝfld → ( Base ‘ ∅ ) = ( Base ‘ ℝfld ) )
12 base0 ∅ = ( Base ‘ ∅ )
13 rebase ℝ = ( Base ‘ ℝfld )
14 11 12 13 3eqtr4g ( ∅ = ℝfld → ∅ = ℝ )
15 10 14 mto ¬ ∅ = ℝfld
16 elsni ( ∅ ∈ { ℝfld } → ∅ = ℝfld )
17 15 16 mto ¬ ∅ ∈ { ℝfld }
18 bj-fvimacnv0 ( ( Fun Scalar ∧ ¬ ∅ ∈ { ℝfld } ) → ( ( Scalar ‘ 𝑉 ) ∈ { ℝfld } ↔ 𝑉 ∈ ( Scalar “ { ℝfld } ) ) )
19 6 17 18 mp2an ( ( Scalar ‘ 𝑉 ) ∈ { ℝfld } ↔ 𝑉 ∈ ( Scalar “ { ℝfld } ) )
20 fvex ( Scalar ‘ 𝑉 ) ∈ V
21 20 elsn ( ( Scalar ‘ 𝑉 ) ∈ { ℝfld } ↔ ( Scalar ‘ 𝑉 ) = ℝfld )
22 19 21 bitr3i ( 𝑉 ∈ ( Scalar “ { ℝfld } ) ↔ ( Scalar ‘ 𝑉 ) = ℝfld )
23 22 anbi2i ( ( 𝑉 ∈ LMod ∧ 𝑉 ∈ ( Scalar “ { ℝfld } ) ) ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) )
24 2 23 bitri ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) )