Metamath Proof Explorer


Definition df-bj-rvec

Description: Definition of the class of real vector spaces. The previous definition, |- RRVec = { x e. LMod | ( Scalarx ) = RRfld } , can be recovered using bj-isrvec . The present one is preferred since it does not use any dummy variable. That RRVec could be defined with LVec in place of LMod is a consequence of bj-isrvec2 . (Contributed by BJ, 9-Jun-2019)

Ref Expression
Assertion df-bj-rvec ℝ-Vec = ( LMod ∩ ( Scalar “ { ℝfld } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrvec ℝ-Vec
1 clmod LMod
2 csca Scalar
3 2 ccnv Scalar
4 crefld fld
5 4 csn { ℝfld }
6 3 5 cima ( Scalar “ { ℝfld } )
7 1 6 cin ( LMod ∩ ( Scalar “ { ℝfld } ) )
8 0 7 wceq ℝ-Vec = ( LMod ∩ ( Scalar “ { ℝfld } ) )