| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-isrvec2.scal | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑉 )  =  𝐾 ) | 
						
							| 2 |  | bj-rvecvec | ⊢ ( 𝑉  ∈  ℝ-Vec  →  𝑉  ∈  LVec ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝜑  →  ( 𝑉  ∈  ℝ-Vec  →  𝑉  ∈  LVec ) ) | 
						
							| 4 |  | bj-rvecrr | ⊢ ( 𝑉  ∈  ℝ-Vec  →  ( Scalar ‘ 𝑉 )  =  ℝfld ) | 
						
							| 5 | 1 | eqeq1d | ⊢ ( 𝜑  →  ( ( Scalar ‘ 𝑉 )  =  ℝfld  ↔  𝐾  =  ℝfld ) ) | 
						
							| 6 | 4 5 | imbitrid | ⊢ ( 𝜑  →  ( 𝑉  ∈  ℝ-Vec  →  𝐾  =  ℝfld ) ) | 
						
							| 7 | 3 6 | jcad | ⊢ ( 𝜑  →  ( 𝑉  ∈  ℝ-Vec  →  ( 𝑉  ∈  LVec  ∧  𝐾  =  ℝfld ) ) ) | 
						
							| 8 |  | bj-vecssmodel | ⊢ ( 𝑉  ∈  LVec  →  𝑉  ∈  LMod ) | 
						
							| 9 | 8 | anim1i | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝐾  =  ℝfld )  →  ( 𝑉  ∈  LMod  ∧  𝐾  =  ℝfld ) ) | 
						
							| 10 | 1 | bj-isrvecd | ⊢ ( 𝜑  →  ( 𝑉  ∈  ℝ-Vec  ↔  ( 𝑉  ∈  LMod  ∧  𝐾  =  ℝfld ) ) ) | 
						
							| 11 | 9 10 | imbitrrid | ⊢ ( 𝜑  →  ( ( 𝑉  ∈  LVec  ∧  𝐾  =  ℝfld )  →  𝑉  ∈  ℝ-Vec ) ) | 
						
							| 12 | 7 11 | impbid | ⊢ ( 𝜑  →  ( 𝑉  ∈  ℝ-Vec  ↔  ( 𝑉  ∈  LVec  ∧  𝐾  =  ℝfld ) ) ) |