| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-isrvec2.scal |  |-  ( ph -> ( Scalar ` V ) = K ) | 
						
							| 2 |  | bj-rvecvec |  |-  ( V e. RRVec -> V e. LVec ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> ( V e. RRVec -> V e. LVec ) ) | 
						
							| 4 |  | bj-rvecrr |  |-  ( V e. RRVec -> ( Scalar ` V ) = RRfld ) | 
						
							| 5 | 1 | eqeq1d |  |-  ( ph -> ( ( Scalar ` V ) = RRfld <-> K = RRfld ) ) | 
						
							| 6 | 4 5 | imbitrid |  |-  ( ph -> ( V e. RRVec -> K = RRfld ) ) | 
						
							| 7 | 3 6 | jcad |  |-  ( ph -> ( V e. RRVec -> ( V e. LVec /\ K = RRfld ) ) ) | 
						
							| 8 |  | bj-vecssmodel |  |-  ( V e. LVec -> V e. LMod ) | 
						
							| 9 | 8 | anim1i |  |-  ( ( V e. LVec /\ K = RRfld ) -> ( V e. LMod /\ K = RRfld ) ) | 
						
							| 10 | 1 | bj-isrvecd |  |-  ( ph -> ( V e. RRVec <-> ( V e. LMod /\ K = RRfld ) ) ) | 
						
							| 11 | 9 10 | imbitrrid |  |-  ( ph -> ( ( V e. LVec /\ K = RRfld ) -> V e. RRVec ) ) | 
						
							| 12 | 7 11 | impbid |  |-  ( ph -> ( V e. RRVec <-> ( V e. LVec /\ K = RRfld ) ) ) |