| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-isrvec2.scal |
|- ( ph -> ( Scalar ` V ) = K ) |
| 2 |
|
bj-rvecvec |
|- ( V e. RRVec -> V e. LVec ) |
| 3 |
2
|
a1i |
|- ( ph -> ( V e. RRVec -> V e. LVec ) ) |
| 4 |
|
bj-rvecrr |
|- ( V e. RRVec -> ( Scalar ` V ) = RRfld ) |
| 5 |
1
|
eqeq1d |
|- ( ph -> ( ( Scalar ` V ) = RRfld <-> K = RRfld ) ) |
| 6 |
4 5
|
imbitrid |
|- ( ph -> ( V e. RRVec -> K = RRfld ) ) |
| 7 |
3 6
|
jcad |
|- ( ph -> ( V e. RRVec -> ( V e. LVec /\ K = RRfld ) ) ) |
| 8 |
|
bj-vecssmodel |
|- ( V e. LVec -> V e. LMod ) |
| 9 |
8
|
anim1i |
|- ( ( V e. LVec /\ K = RRfld ) -> ( V e. LMod /\ K = RRfld ) ) |
| 10 |
1
|
bj-isrvecd |
|- ( ph -> ( V e. RRVec <-> ( V e. LMod /\ K = RRfld ) ) ) |
| 11 |
9 10
|
imbitrrid |
|- ( ph -> ( ( V e. LVec /\ K = RRfld ) -> V e. RRVec ) ) |
| 12 |
7 11
|
impbid |
|- ( ph -> ( V e. RRVec <-> ( V e. LVec /\ K = RRfld ) ) ) |