Metamath Proof Explorer


Theorem bj-isrvec2

Description: The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypothesis bj-isrvec2.scal φScalarV=K
Assertion bj-isrvec2 φVℝVecVLVecK=fld

Proof

Step Hyp Ref Expression
1 bj-isrvec2.scal φScalarV=K
2 bj-rvecvec VℝVecVLVec
3 2 a1i φVℝVecVLVec
4 bj-rvecrr VℝVecScalarV=fld
5 1 eqeq1d φScalarV=fldK=fld
6 4 5 imbitrid φVℝVecK=fld
7 3 6 jcad φVℝVecVLVecK=fld
8 bj-vecssmodel VLVecVLMod
9 8 anim1i VLVecK=fldVLModK=fld
10 1 bj-isrvecd φVℝVecVLModK=fld
11 9 10 imbitrrid φVLVecK=fldVℝVec
12 7 11 impbid φVℝVecVLVecK=fld