Metamath Proof Explorer


Theorem bj-rvecvec

Description: Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecvec V ℝVec V LVec

Proof

Step Hyp Ref Expression
1 bj-rvecmod V ℝVec V LMod
2 bj-rrdrg fld DivRing
3 2 a1i V ℝVec fld DivRing
4 bj-rvecrr V ℝVec Scalar V = fld
5 4 eqcomd V ℝVec fld = Scalar V
6 5 bj-isvec V ℝVec V LVec V LMod fld DivRing
7 1 3 6 mpbir2and V ℝVec V LVec