Metamath Proof Explorer


Theorem bj-rvecvec

Description: Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecvec
|- ( V e. RRVec -> V e. LVec )

Proof

Step Hyp Ref Expression
1 bj-rvecmod
 |-  ( V e. RRVec -> V e. LMod )
2 bj-rrdrg
 |-  RRfld e. DivRing
3 2 a1i
 |-  ( V e. RRVec -> RRfld e. DivRing )
4 bj-rvecrr
 |-  ( V e. RRVec -> ( Scalar ` V ) = RRfld )
5 4 eqcomd
 |-  ( V e. RRVec -> RRfld = ( Scalar ` V ) )
6 5 bj-isvec
 |-  ( V e. RRVec -> ( V e. LVec <-> ( V e. LMod /\ RRfld e. DivRing ) ) )
7 1 3 6 mpbir2and
 |-  ( V e. RRVec -> V e. LVec )