Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-isvec.scal | |- ( ph -> K = ( Scalar ` V ) ) |
|
Assertion | bj-isvec | |- ( ph -> ( V e. LVec <-> ( V e. LMod /\ K e. DivRing ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-isvec.scal | |- ( ph -> K = ( Scalar ` V ) ) |
|
2 | eqid | |- ( Scalar ` V ) = ( Scalar ` V ) |
|
3 | 2 | islvec | |- ( V e. LVec <-> ( V e. LMod /\ ( Scalar ` V ) e. DivRing ) ) |
4 | 1 | eqcomd | |- ( ph -> ( Scalar ` V ) = K ) |
5 | 4 | eleq1d | |- ( ph -> ( ( Scalar ` V ) e. DivRing <-> K e. DivRing ) ) |
6 | 5 | anbi2d | |- ( ph -> ( ( V e. LMod /\ ( Scalar ` V ) e. DivRing ) <-> ( V e. LMod /\ K e. DivRing ) ) ) |
7 | 3 6 | syl5bb | |- ( ph -> ( V e. LVec <-> ( V e. LMod /\ K e. DivRing ) ) ) |