Metamath Proof Explorer


Theorem bj-isvec

Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypothesis bj-isvec.scal φK=ScalarV
Assertion bj-isvec φVLVecVLModKDivRing

Proof

Step Hyp Ref Expression
1 bj-isvec.scal φK=ScalarV
2 eqid ScalarV=ScalarV
3 2 islvec VLVecVLModScalarVDivRing
4 1 eqcomd φScalarV=K
5 4 eleq1d φScalarVDivRingKDivRing
6 5 anbi2d φVLModScalarVDivRingVLModKDivRing
7 3 6 bitrid φVLVecVLModKDivRing