Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Affine, Euclidean, and Cartesian geometry
Real vector spaces
bj-isvec
Next ⟩
bj-fldssdrng
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-isvec
Description:
The predicate "is a vector space".
(Contributed by
BJ
, 6-Jan-2024)
Ref
Expression
Hypothesis
bj-isvec.scal
⊢
φ
→
K
=
Scalar
⁡
V
Assertion
bj-isvec
⊢
φ
→
V
∈
LVec
↔
V
∈
LMod
∧
K
∈
DivRing
Proof
Step
Hyp
Ref
Expression
1
bj-isvec.scal
⊢
φ
→
K
=
Scalar
⁡
V
2
eqid
⊢
Scalar
⁡
V
=
Scalar
⁡
V
3
2
islvec
⊢
V
∈
LVec
↔
V
∈
LMod
∧
Scalar
⁡
V
∈
DivRing
4
1
eqcomd
⊢
φ
→
Scalar
⁡
V
=
K
5
4
eleq1d
⊢
φ
→
Scalar
⁡
V
∈
DivRing
↔
K
∈
DivRing
6
5
anbi2d
⊢
φ
→
V
∈
LMod
∧
Scalar
⁡
V
∈
DivRing
↔
V
∈
LMod
∧
K
∈
DivRing
7
3
6
bitrid
⊢
φ
→
V
∈
LVec
↔
V
∈
LMod
∧
K
∈
DivRing