Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-isvec.scal | ⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑉 ) ) | |
| Assertion | bj-isvec | ⊢ ( 𝜑 → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-isvec.scal | ⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑉 ) ) | |
| 2 | eqid | ⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) | |
| 3 | 2 | islvec | ⊢ ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) ∈ DivRing ) ) | 
| 4 | 1 | eqcomd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑉 ) = 𝐾 ) | 
| 5 | 4 | eleq1d | ⊢ ( 𝜑 → ( ( Scalar ‘ 𝑉 ) ∈ DivRing ↔ 𝐾 ∈ DivRing ) ) | 
| 6 | 5 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) ∈ DivRing ) ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) ) | 
| 7 | 3 6 | bitrid | ⊢ ( 𝜑 → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) ) |