Metamath Proof Explorer


Theorem bj-isvec

Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypothesis bj-isvec.scal ( 𝜑𝐾 = ( Scalar ‘ 𝑉 ) )
Assertion bj-isvec ( 𝜑 → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) )

Proof

Step Hyp Ref Expression
1 bj-isvec.scal ( 𝜑𝐾 = ( Scalar ‘ 𝑉 ) )
2 eqid ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 )
3 2 islvec ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) ∈ DivRing ) )
4 1 eqcomd ( 𝜑 → ( Scalar ‘ 𝑉 ) = 𝐾 )
5 4 eleq1d ( 𝜑 → ( ( Scalar ‘ 𝑉 ) ∈ DivRing ↔ 𝐾 ∈ DivRing ) )
6 5 anbi2d ( 𝜑 → ( ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) ∈ DivRing ) ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) )
7 3 6 syl5bb ( 𝜑 → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) )