Description: The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-isvec.scal | ⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑉 ) ) | |
Assertion | bj-isvec | ⊢ ( 𝜑 → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-isvec.scal | ⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑉 ) ) | |
2 | eqid | ⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) | |
3 | 2 | islvec | ⊢ ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) ∈ DivRing ) ) |
4 | 1 | eqcomd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑉 ) = 𝐾 ) |
5 | 4 | eleq1d | ⊢ ( 𝜑 → ( ( Scalar ‘ 𝑉 ) ∈ DivRing ↔ 𝐾 ∈ DivRing ) ) |
6 | 5 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) ∈ DivRing ) ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) ) |
7 | 3 6 | syl5bb | ⊢ ( 𝜑 → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) ) |