Description: Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-rvecvec | ⊢ ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rvecmod | ⊢ ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod ) | |
2 | bj-rrdrg | ⊢ ℝfld ∈ DivRing | |
3 | 2 | a1i | ⊢ ( 𝑉 ∈ ℝ-Vec → ℝfld ∈ DivRing ) |
4 | bj-rvecrr | ⊢ ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld ) | |
5 | 4 | eqcomd | ⊢ ( 𝑉 ∈ ℝ-Vec → ℝfld = ( Scalar ‘ 𝑉 ) ) |
6 | 5 | bj-isvec | ⊢ ( 𝑉 ∈ ℝ-Vec → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ ℝfld ∈ DivRing ) ) ) |
7 | 1 3 6 | mpbir2and | ⊢ ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LVec ) |