Metamath Proof Explorer


Theorem bj-rvecvec

Description: Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecvec ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LVec )

Proof

Step Hyp Ref Expression
1 bj-rvecmod ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod )
2 bj-rrdrg fld ∈ DivRing
3 2 a1i ( 𝑉 ∈ ℝ-Vec → ℝfld ∈ DivRing )
4 bj-rvecrr ( 𝑉 ∈ ℝ-Vec → ( Scalar ‘ 𝑉 ) = ℝfld )
5 4 eqcomd ( 𝑉 ∈ ℝ-Vec → ℝfld = ( Scalar ‘ 𝑉 ) )
6 5 bj-isvec ( 𝑉 ∈ ℝ-Vec → ( 𝑉 ∈ LVec ↔ ( 𝑉 ∈ LMod ∧ ℝfld ∈ DivRing ) ) )
7 1 3 6 mpbir2and ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LVec )