Metamath Proof Explorer


Theorem bj-rvecmod

Description: Real vector spaces are modules (elemental version). (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecmod ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod )

Proof

Step Hyp Ref Expression
1 bj-isrvec ( 𝑉 ∈ ℝ-Vec ↔ ( 𝑉 ∈ LMod ∧ ( Scalar ‘ 𝑉 ) = ℝfld ) )
2 1 simplbi ( 𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod )