Metamath Proof Explorer


Theorem bj-isrvecd

Description: The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypothesis bj-isrvecd.scal φScalarV=K
Assertion bj-isrvecd φVℝVecVLModK=fld

Proof

Step Hyp Ref Expression
1 bj-isrvecd.scal φScalarV=K
2 bj-isrvec VℝVecVLModScalarV=fld
3 1 eqeq1d φScalarV=fldK=fld
4 3 anbi2d φVLModScalarV=fldVLModK=fld
5 2 4 bitrid φVℝVecVLModK=fld