Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Affine, Euclidean, and Cartesian geometry
Real vector spaces
bj-isrvecd
Next ⟩
bj-rvecvec
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-isrvecd
Description:
The predicate "is a real vector space".
(Contributed by
BJ
, 6-Jan-2024)
Ref
Expression
Hypothesis
bj-isrvecd.scal
⊢
φ
→
Scalar
⁡
V
=
K
Assertion
bj-isrvecd
⊢
φ
→
V
∈
ℝVec
↔
V
∈
LMod
∧
K
=
ℝ
fld
Proof
Step
Hyp
Ref
Expression
1
bj-isrvecd.scal
⊢
φ
→
Scalar
⁡
V
=
K
2
bj-isrvec
⊢
V
∈
ℝVec
↔
V
∈
LMod
∧
Scalar
⁡
V
=
ℝ
fld
3
1
eqeq1d
⊢
φ
→
Scalar
⁡
V
=
ℝ
fld
↔
K
=
ℝ
fld
4
3
anbi2d
⊢
φ
→
V
∈
LMod
∧
Scalar
⁡
V
=
ℝ
fld
↔
V
∈
LMod
∧
K
=
ℝ
fld
5
2
4
bitrid
⊢
φ
→
V
∈
ℝVec
↔
V
∈
LMod
∧
K
=
ℝ
fld