Metamath Proof Explorer


Theorem bj-isrvecd

Description: The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypothesis bj-isrvecd.scal
|- ( ph -> ( Scalar ` V ) = K )
Assertion bj-isrvecd
|- ( ph -> ( V e. RRVec <-> ( V e. LMod /\ K = RRfld ) ) )

Proof

Step Hyp Ref Expression
1 bj-isrvecd.scal
 |-  ( ph -> ( Scalar ` V ) = K )
2 bj-isrvec
 |-  ( V e. RRVec <-> ( V e. LMod /\ ( Scalar ` V ) = RRfld ) )
3 1 eqeq1d
 |-  ( ph -> ( ( Scalar ` V ) = RRfld <-> K = RRfld ) )
4 3 anbi2d
 |-  ( ph -> ( ( V e. LMod /\ ( Scalar ` V ) = RRfld ) <-> ( V e. LMod /\ K = RRfld ) ) )
5 2 4 syl5bb
 |-  ( ph -> ( V e. RRVec <-> ( V e. LMod /\ K = RRfld ) ) )