Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-rvec |
|- RRVec = ( LMod i^i ( `' Scalar " { RRfld } ) ) |
2 |
1
|
elin2 |
|- ( V e. RRVec <-> ( V e. LMod /\ V e. ( `' Scalar " { RRfld } ) ) ) |
3 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
4 |
3
|
slotfn |
|- Scalar Fn _V |
5 |
|
df-fn |
|- ( Scalar Fn _V <-> ( Fun Scalar /\ dom Scalar = _V ) ) |
6 |
4 5
|
mpbi |
|- ( Fun Scalar /\ dom Scalar = _V ) |
7 |
|
elex |
|- ( V e. LMod -> V e. _V ) |
8 |
|
eleq2 |
|- ( dom Scalar = _V -> ( V e. dom Scalar <-> V e. _V ) ) |
9 |
7 8
|
syl5ibrcom |
|- ( V e. LMod -> ( dom Scalar = _V -> V e. dom Scalar ) ) |
10 |
9
|
anim2d |
|- ( V e. LMod -> ( ( Fun Scalar /\ dom Scalar = _V ) -> ( Fun Scalar /\ V e. dom Scalar ) ) ) |
11 |
6 10
|
mpi |
|- ( V e. LMod -> ( Fun Scalar /\ V e. dom Scalar ) ) |
12 |
|
fvimacnv |
|- ( ( Fun Scalar /\ V e. dom Scalar ) -> ( ( Scalar ` V ) e. { RRfld } <-> V e. ( `' Scalar " { RRfld } ) ) ) |
13 |
11 12
|
syl |
|- ( V e. LMod -> ( ( Scalar ` V ) e. { RRfld } <-> V e. ( `' Scalar " { RRfld } ) ) ) |
14 |
|
fvex |
|- ( Scalar ` V ) e. _V |
15 |
14
|
elsn |
|- ( ( Scalar ` V ) e. { RRfld } <-> ( Scalar ` V ) = RRfld ) |
16 |
13 15
|
bitr3di |
|- ( V e. LMod -> ( V e. ( `' Scalar " { RRfld } ) <-> ( Scalar ` V ) = RRfld ) ) |
17 |
16
|
pm5.32i |
|- ( ( V e. LMod /\ V e. ( `' Scalar " { RRfld } ) ) <-> ( V e. LMod /\ ( Scalar ` V ) = RRfld ) ) |
18 |
2 17
|
bitri |
|- ( V e. RRVec <-> ( V e. LMod /\ ( Scalar ` V ) = RRfld ) ) |