Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-rvec |
|- RRVec = ( LMod i^i ( `' Scalar " { RRfld } ) ) |
2 |
1
|
elin2 |
|- ( V e. RRVec <-> ( V e. LMod /\ V e. ( `' Scalar " { RRfld } ) ) ) |
3 |
|
bj-evalfun |
|- Fun Slot 5 |
4 |
|
df-sca |
|- Scalar = Slot 5 |
5 |
4
|
funeqi |
|- ( Fun Scalar <-> Fun Slot 5 ) |
6 |
3 5
|
mpbir |
|- Fun Scalar |
7 |
|
0re |
|- 0 e. RR |
8 |
7
|
n0ii |
|- -. RR = (/) |
9 |
|
eqcom |
|- ( (/) = RR <-> RR = (/) ) |
10 |
8 9
|
mtbir |
|- -. (/) = RR |
11 |
|
fveq2 |
|- ( (/) = RRfld -> ( Base ` (/) ) = ( Base ` RRfld ) ) |
12 |
|
base0 |
|- (/) = ( Base ` (/) ) |
13 |
|
rebase |
|- RR = ( Base ` RRfld ) |
14 |
11 12 13
|
3eqtr4g |
|- ( (/) = RRfld -> (/) = RR ) |
15 |
10 14
|
mto |
|- -. (/) = RRfld |
16 |
|
elsni |
|- ( (/) e. { RRfld } -> (/) = RRfld ) |
17 |
15 16
|
mto |
|- -. (/) e. { RRfld } |
18 |
|
bj-fvimacnv0 |
|- ( ( Fun Scalar /\ -. (/) e. { RRfld } ) -> ( ( Scalar ` V ) e. { RRfld } <-> V e. ( `' Scalar " { RRfld } ) ) ) |
19 |
6 17 18
|
mp2an |
|- ( ( Scalar ` V ) e. { RRfld } <-> V e. ( `' Scalar " { RRfld } ) ) |
20 |
|
fvex |
|- ( Scalar ` V ) e. _V |
21 |
20
|
elsn |
|- ( ( Scalar ` V ) e. { RRfld } <-> ( Scalar ` V ) = RRfld ) |
22 |
19 21
|
bitr3i |
|- ( V e. ( `' Scalar " { RRfld } ) <-> ( Scalar ` V ) = RRfld ) |
23 |
22
|
anbi2i |
|- ( ( V e. LMod /\ V e. ( `' Scalar " { RRfld } ) ) <-> ( V e. LMod /\ ( Scalar ` V ) = RRfld ) ) |
24 |
2 23
|
bitri |
|- ( V e. RRVec <-> ( V e. LMod /\ ( Scalar ` V ) = RRfld ) ) |