Metamath Proof Explorer


Theorem bj-vecssmodel

Description: Vector spaces are modules (elemental version). This is a shorter proof of lveclmod . (Contributed by BJ, 9-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-vecssmodel ( 𝐴 ∈ LVec → 𝐴 ∈ LMod )

Proof

Step Hyp Ref Expression
1 bj-vecssmod LVec ⊆ LMod
2 1 sseli ( 𝐴 ∈ LVec → 𝐴 ∈ LMod )