| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax12v |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 2 |
1
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 3 |
2
|
com12 |
⊢ ( 𝜑 → ( 𝑦 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 4 |
3
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( 𝑦 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 5 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 6 |
5
|
com12 |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
| 7 |
6
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → 𝜑 ) ) |
| 8 |
7
|
a2i |
⊢ ( ( 𝑦 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝑦 = 𝑥 → 𝜑 ) ) |
| 9 |
8
|
alimi |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) ) |
| 10 |
|
bj-eqs |
⊢ ( 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → 𝜑 ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → 𝜑 ) |
| 12 |
4 11
|
impbii |
⊢ ( 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |