Step |
Hyp |
Ref |
Expression |
1 |
|
ax12v |
|- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
2 |
1
|
equcoms |
|- ( y = x -> ( ph -> A. x ( x = y -> ph ) ) ) |
3 |
2
|
com12 |
|- ( ph -> ( y = x -> A. x ( x = y -> ph ) ) ) |
4 |
3
|
alrimiv |
|- ( ph -> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |
5 |
|
sp |
|- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
6 |
5
|
com12 |
|- ( x = y -> ( A. x ( x = y -> ph ) -> ph ) ) |
7 |
6
|
equcoms |
|- ( y = x -> ( A. x ( x = y -> ph ) -> ph ) ) |
8 |
7
|
a2i |
|- ( ( y = x -> A. x ( x = y -> ph ) ) -> ( y = x -> ph ) ) |
9 |
8
|
alimi |
|- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> A. y ( y = x -> ph ) ) |
10 |
|
bj-eqs |
|- ( ph <-> A. y ( y = x -> ph ) ) |
11 |
9 10
|
sylibr |
|- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> ph ) |
12 |
4 11
|
impbii |
|- ( ph <-> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |