Description: Variant of sbievw . (Contributed by BJ, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-sbievwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| bj-sbievwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | ||
| bj-sbievwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | bj-sbievwd | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sbievwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | bj-sbievwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | |
| 3 | bj-sbievwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | sb6 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) | |
| 5 | 1 2 3 | bj-equsalvwd | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ 𝜒 ) ) |
| 6 | 4 5 | bitrid | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |