Description: Dual statement of sylgt . Closed form of bj-sylge . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sylget | ⊢ ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( ( ∃ 𝑥 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜒 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim | ⊢ ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( ∃ 𝑥 𝜒 → ∃ 𝑥 𝜑 ) ) | |
2 | 1 | imim1d | ⊢ ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( ( ∃ 𝑥 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜒 → 𝜓 ) ) ) |