Description: Dual statement of sylgt . Closed form of bj-sylge . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sylget | |- ( A. x ( ch -> ph ) -> ( ( E. x ph -> ps ) -> ( E. x ch -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim | |- ( A. x ( ch -> ph ) -> ( E. x ch -> E. x ph ) ) |
|
| 2 | 1 | imim1d | |- ( A. x ( ch -> ph ) -> ( ( E. x ph -> ps ) -> ( E. x ch -> ps ) ) ) |