Description: Dual statement of sylgt . Closed form of bj-sylge . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sylget | |- ( A. x ( ch -> ph ) -> ( ( E. x ph -> ps ) -> ( E. x ch -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim | |- ( A. x ( ch -> ph ) -> ( E. x ch -> E. x ph ) ) |
|
2 | 1 | imim1d | |- ( A. x ( ch -> ph ) -> ( ( E. x ph -> ps ) -> ( E. x ch -> ps ) ) ) |