Metamath Proof Explorer


Theorem bj-sylge

Description: Dual statement of sylg (the final "e" in the label stands for "existential (version of sylg )". Variant of exlimih . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-sylge.nf
|- ( E. x ph -> ps )
bj-sylge.maj
|- ( ch -> ph )
Assertion bj-sylge
|- ( E. x ch -> ps )

Proof

Step Hyp Ref Expression
1 bj-sylge.nf
 |-  ( E. x ph -> ps )
2 bj-sylge.maj
 |-  ( ch -> ph )
3 2 eximi
 |-  ( E. x ch -> E. x ph )
4 3 1 syl
 |-  ( E. x ch -> ps )