Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bloln.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| bloln.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| Assertion | bloln | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloln.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 2 | bloln.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 3 | eqid | ⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) | |
| 4 | 3 1 2 | isblo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) ) ) |
| 5 | 4 | simprbda | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ 𝐿 ) |
| 6 | 5 | 3impa | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ 𝐿 ) |