Metamath Proof Explorer


Theorem bnj1149

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1149.1 ( 𝜑𝐴 ∈ V )
bnj1149.2 ( 𝜑𝐵 ∈ V )
Assertion bnj1149 ( 𝜑 → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 bnj1149.1 ( 𝜑𝐴 ∈ V )
2 bnj1149.2 ( 𝜑𝐵 ∈ V )
3 unexg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝐵 ) ∈ V )