Metamath Proof Explorer


Theorem bnj1149

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1149.1
|- ( ph -> A e. _V )
bnj1149.2
|- ( ph -> B e. _V )
Assertion bnj1149
|- ( ph -> ( A u. B ) e. _V )

Proof

Step Hyp Ref Expression
1 bnj1149.1
 |-  ( ph -> A e. _V )
2 bnj1149.2
 |-  ( ph -> B e. _V )
3 unexg
 |-  ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V )
4 1 2 3 syl2anc
 |-  ( ph -> ( A u. B ) e. _V )