Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1149.1 | |- ( ph -> A e. _V ) |
|
bnj1149.2 | |- ( ph -> B e. _V ) |
||
Assertion | bnj1149 | |- ( ph -> ( A u. B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1149.1 | |- ( ph -> A e. _V ) |
|
2 | bnj1149.2 | |- ( ph -> B e. _V ) |
|
3 | unexg | |- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A u. B ) e. _V ) |