Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1149.1 | |- ( ph -> A e. _V ) |
|
| bnj1149.2 | |- ( ph -> B e. _V ) |
||
| Assertion | bnj1149 | |- ( ph -> ( A u. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1149.1 | |- ( ph -> A e. _V ) |
|
| 2 | bnj1149.2 | |- ( ph -> B e. _V ) |
|
| 3 | unexg | |- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A u. B ) e. _V ) |