Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1500.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1500.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1500.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1500.4 |
⊢ 𝐹 = ∪ 𝐶 |
5 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
6 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ) |
7 |
|
biid |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑 ) ↔ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑 ) ) |
8 |
1 2 3 4 5 6 7
|
bnj1501 |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |