Metamath Proof Explorer


Theorem bnj1500

Description: Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1500.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1500.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1500.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1500.4 𝐹 = 𝐶
Assertion bnj1500 ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 bnj1500.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1500.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1500.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1500.4 𝐹 = 𝐶
5 biid ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) ↔ ( 𝑅 FrSe 𝐴𝑥𝐴 ) )
6 biid ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) ∧ 𝑓𝐶𝑥 ∈ dom 𝑓 ) ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) ∧ 𝑓𝐶𝑥 ∈ dom 𝑓 ) )
7 biid ( ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) ∧ 𝑓𝐶𝑥 ∈ dom 𝑓 ) ∧ 𝑑𝐵 ∧ dom 𝑓 = 𝑑 ) ↔ ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) ∧ 𝑓𝐶𝑥 ∈ dom 𝑓 ) ∧ 𝑑𝐵 ∧ dom 𝑓 = 𝑑 ) )
8 1 2 3 4 5 6 7 bnj1501 ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) )