Metamath Proof Explorer


Theorem bnj1500

Description: Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1500.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1500.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1500.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1500.4
|- F = U. C
Assertion bnj1500
|- ( R _FrSe A -> A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )

Proof

Step Hyp Ref Expression
1 bnj1500.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1500.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1500.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1500.4
 |-  F = U. C
5 biid
 |-  ( ( R _FrSe A /\ x e. A ) <-> ( R _FrSe A /\ x e. A ) )
6 biid
 |-  ( ( ( R _FrSe A /\ x e. A ) /\ f e. C /\ x e. dom f ) <-> ( ( R _FrSe A /\ x e. A ) /\ f e. C /\ x e. dom f ) )
7 biid
 |-  ( ( ( ( R _FrSe A /\ x e. A ) /\ f e. C /\ x e. dom f ) /\ d e. B /\ dom f = d ) <-> ( ( ( R _FrSe A /\ x e. A ) /\ f e. C /\ x e. dom f ) /\ d e. B /\ dom f = d ) )
8 1 2 3 4 5 6 7 bnj1501
 |-  ( R _FrSe A -> A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) )