| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1501.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1501.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1501.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1501.4 |
|- F = U. C |
| 5 |
|
bnj1501.5 |
|- ( ph <-> ( R _FrSe A /\ x e. A ) ) |
| 6 |
|
bnj1501.6 |
|- ( ps <-> ( ph /\ f e. C /\ x e. dom f ) ) |
| 7 |
|
bnj1501.7 |
|- ( ch <-> ( ps /\ d e. B /\ dom f = d ) ) |
| 8 |
5
|
simprbi |
|- ( ph -> x e. A ) |
| 9 |
1 2 3 4
|
bnj60 |
|- ( R _FrSe A -> F Fn A ) |
| 10 |
9
|
fndmd |
|- ( R _FrSe A -> dom F = A ) |
| 11 |
5 10
|
bnj832 |
|- ( ph -> dom F = A ) |
| 12 |
8 11
|
eleqtrrd |
|- ( ph -> x e. dom F ) |
| 13 |
4
|
dmeqi |
|- dom F = dom U. C |
| 14 |
3
|
bnj1317 |
|- ( w e. C -> A. f w e. C ) |
| 15 |
14
|
bnj1400 |
|- dom U. C = U_ f e. C dom f |
| 16 |
13 15
|
eqtri |
|- dom F = U_ f e. C dom f |
| 17 |
12 16
|
eleqtrdi |
|- ( ph -> x e. U_ f e. C dom f ) |
| 18 |
17
|
bnj1405 |
|- ( ph -> E. f e. C x e. dom f ) |
| 19 |
18 6
|
bnj1209 |
|- ( ph -> E. f ps ) |
| 20 |
3
|
bnj1436 |
|- ( f e. C -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
| 21 |
20
|
bnj1299 |
|- ( f e. C -> E. d e. B f Fn d ) |
| 22 |
|
fndm |
|- ( f Fn d -> dom f = d ) |
| 23 |
21 22
|
bnj31 |
|- ( f e. C -> E. d e. B dom f = d ) |
| 24 |
6 23
|
bnj836 |
|- ( ps -> E. d e. B dom f = d ) |
| 25 |
1 2 3 4 5 6
|
bnj1518 |
|- ( ps -> A. d ps ) |
| 26 |
24 7 25
|
bnj1521 |
|- ( ps -> E. d ch ) |
| 27 |
9
|
fnfund |
|- ( R _FrSe A -> Fun F ) |
| 28 |
5 27
|
bnj832 |
|- ( ph -> Fun F ) |
| 29 |
6 28
|
bnj835 |
|- ( ps -> Fun F ) |
| 30 |
|
elssuni |
|- ( f e. C -> f C_ U. C ) |
| 31 |
30 4
|
sseqtrrdi |
|- ( f e. C -> f C_ F ) |
| 32 |
6 31
|
bnj836 |
|- ( ps -> f C_ F ) |
| 33 |
6
|
simp3bi |
|- ( ps -> x e. dom f ) |
| 34 |
29 32 33
|
bnj1502 |
|- ( ps -> ( F ` x ) = ( f ` x ) ) |
| 35 |
1 2 3
|
bnj1514 |
|- ( f e. C -> A. x e. dom f ( f ` x ) = ( G ` Y ) ) |
| 36 |
6 35
|
bnj836 |
|- ( ps -> A. x e. dom f ( f ` x ) = ( G ` Y ) ) |
| 37 |
36 33
|
bnj1294 |
|- ( ps -> ( f ` x ) = ( G ` Y ) ) |
| 38 |
34 37
|
eqtrd |
|- ( ps -> ( F ` x ) = ( G ` Y ) ) |
| 39 |
7 38
|
bnj835 |
|- ( ch -> ( F ` x ) = ( G ` Y ) ) |
| 40 |
7 29
|
bnj835 |
|- ( ch -> Fun F ) |
| 41 |
7 32
|
bnj835 |
|- ( ch -> f C_ F ) |
| 42 |
1
|
bnj1517 |
|- ( d e. B -> A. x e. d _pred ( x , A , R ) C_ d ) |
| 43 |
7 42
|
bnj836 |
|- ( ch -> A. x e. d _pred ( x , A , R ) C_ d ) |
| 44 |
7 33
|
bnj835 |
|- ( ch -> x e. dom f ) |
| 45 |
7
|
simp3bi |
|- ( ch -> dom f = d ) |
| 46 |
44 45
|
eleqtrd |
|- ( ch -> x e. d ) |
| 47 |
43 46
|
bnj1294 |
|- ( ch -> _pred ( x , A , R ) C_ d ) |
| 48 |
47 45
|
sseqtrrd |
|- ( ch -> _pred ( x , A , R ) C_ dom f ) |
| 49 |
40 41 48
|
bnj1503 |
|- ( ch -> ( F |` _pred ( x , A , R ) ) = ( f |` _pred ( x , A , R ) ) ) |
| 50 |
49
|
opeq2d |
|- ( ch -> <. x , ( F |` _pred ( x , A , R ) ) >. = <. x , ( f |` _pred ( x , A , R ) ) >. ) |
| 51 |
50 2
|
eqtr4di |
|- ( ch -> <. x , ( F |` _pred ( x , A , R ) ) >. = Y ) |
| 52 |
51
|
fveq2d |
|- ( ch -> ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) = ( G ` Y ) ) |
| 53 |
39 52
|
eqtr4d |
|- ( ch -> ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 54 |
26 53
|
bnj593 |
|- ( ps -> E. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 55 |
1 2 3 4
|
bnj1519 |
|- ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 56 |
54 55
|
bnj1397 |
|- ( ps -> ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 57 |
19 56
|
bnj593 |
|- ( ph -> E. f ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 58 |
1 2 3 4
|
bnj1520 |
|- ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. f ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 59 |
57 58
|
bnj1397 |
|- ( ph -> ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |
| 60 |
5 59
|
bnj1459 |
|- ( R _FrSe A -> A. x e. A ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |