Metamath Proof Explorer


Theorem bnj1209

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1209.1
|- ( ch -> E. x e. B ph )
bnj1209.2
|- ( th <-> ( ch /\ x e. B /\ ph ) )
Assertion bnj1209
|- ( ch -> E. x th )

Proof

Step Hyp Ref Expression
1 bnj1209.1
 |-  ( ch -> E. x e. B ph )
2 bnj1209.2
 |-  ( th <-> ( ch /\ x e. B /\ ph ) )
3 1 bnj1196
 |-  ( ch -> E. x ( x e. B /\ ph ) )
4 3 ancli
 |-  ( ch -> ( ch /\ E. x ( x e. B /\ ph ) ) )
5 19.42v
 |-  ( E. x ( ch /\ ( x e. B /\ ph ) ) <-> ( ch /\ E. x ( x e. B /\ ph ) ) )
6 4 5 sylibr
 |-  ( ch -> E. x ( ch /\ ( x e. B /\ ph ) ) )
7 3anass
 |-  ( ( ch /\ x e. B /\ ph ) <-> ( ch /\ ( x e. B /\ ph ) ) )
8 2 7 bitri
 |-  ( th <-> ( ch /\ ( x e. B /\ ph ) ) )
9 6 8 bnj1198
 |-  ( ch -> E. x th )